Abstract
Stereoselective synthesis of two diastereomers of a saturated 14-membered γ-hydroxy
macrolide using conformational stereocontrol is reported.
Key words
macrocycles - lactones - macrolides - diastereoselectivity - conformational stereocontrol
References
<A NAME="RE00301SS-1A">1a </A> For some examples, see:
Still WC.
Novac VJ.
J. Am. Chem. Soc.
1984,
106:
1148
<A NAME="RE00301SS-1B">1b </A>
Paterson I.
Rawson DJ.
Tetrahedron Lett.
1989,
30:
7463
<A NAME="RE00301SS-2A">2a </A>
Still WC.
MacPherson LJ.
Harada T.
Callahan JF.
Rheingold AL.
Tetrahedron
1984,
40:
2275
<A NAME="RE00301SS-2B">2b </A>
Tércio J.
Ferreira B.
Simonelli F.
Tetrahedron
1990,
46:
6311
<A NAME="RE00301SS-3">3 </A>
Kaisalo L.
Koskimies J.
Hase T.
J. Chem. Soc., Perkin Trans. 2
2000,
1477
<A NAME="RE00301SS-4">4 </A> For previous studies concerning conformationally controlled reductions of saturated
14-membered ring ketolactones, see:
Neeland EG.
Ounsworth JP.
Sims RJ.
Weiler L.
J. Org. Chem.
1994,
59:
7383 and references cited therein
<A NAME="RE00301SS-5">5 </A>
Luche J.-L.
J. Am. Chem. Soc.
1978,
100:
2226
<A NAME="RE00301SS-6">6 </A>
Inanaga J.
Hirata K.
Saeki H.
Katsuki T.
Yamaguchi M.
Bull. Chem. Soc. Jpn.
1979,
52:
1989
<A NAME="RE00301SS-7">7 </A>
The diastereomeric ratio of the acetylated products was determined by GC.
<A NAME="RE00301SS-8">8 </A> MacroModel V6.5:
Mohamadi F.
Richards NGJ.
Guida WC.
Liskamp R.
Lipton M.
Caulfield C.
Chang G.
Hendrickson T.
DeGust F.
Still WC.
J. Comput. Chem.
1990,
11:
440
<A NAME="RE00301SS-9">9 </A>
The calculations of 4 should be considered as approximate because some of the force field (MM3*) parameters
were low quality parameters. We did the calculations also in an MM2* force field but
many of the obtained low energy conformations violated the Schweizer-Dunitz rule.
[11 ]
<A NAME="RE00301SS-10">10 </A>
Still WC.
Galynker I.
Tetrahedron
1981,
37:
3981
<A NAME="RE00301SS-11">11 </A>
Schweizer WB.
Dunitz JD.
Helv. Chim. Acta
1982,
65:
1547
<A NAME="RE00301SS-12">12 </A>
Structural assignments of products 5 and 6 are based on the differences in the 1 H NMR shifts and coupling constants of the starting materials 7 and 9
[3 ]
and on the X-ray structure of 9 .
<A NAME="RE00301SS-13A">13a </A>
Cerveny L.
Lövyová A.
Ruzicka V.
Collect. Czech. Chem. Commun.
1980,
45:
3532
<A NAME="RE00301SS-13B">13b </A>
Kraus M.
Collect. Czech. Chem. Commun.
1972,
37:
460
<A NAME="RE00301SS-13C">13c </A>
Sehgal RK.
Koeningsberger RU.
Howard TJ.
J. Org. Chem.
1975,
40:
3073
<A NAME="RE00301SS-14">14 </A>
Kaisalo L.
Koskimies J.
Hase T.
Synthesis
1996,
1122 and references cited therein
<A NAME="RE00301SS-15A">15a </A>
Mori K.
Nomi H.
Chuman T.
Kohno M.
Kato K.
Noguchi M.
Tetrahedron
1982,
38:
3705
<A NAME="RE00301SS-15B">15b </A>
Terinek M.
Kozmik V.
Palecek J.
Collect. Czech. Chem. Commun.
1997,
62:
1325
<A NAME="RE00301SS-15C">15c </A>
Kitazume T.
Asai M.
Tsukamoto T.
Yamazaki T.
J. Fluorine Chem.
1992,
56:
271
<A NAME="RE00301SS-16">16 </A>
Nagahama N.
Takamori I.
Suzuki M.
Chem. Pharm. Bull.
1971,
19:
655
<A NAME="RE00301SS-17">17 </A>
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
2nd ed.:
Wiley;
New York:
1991.